如何理解 ISP
接口隔离原则的英文翻译是“ Interface Segregation Principle”,缩写为 ISP。Robert Martin 在 SOLID 原则中是这样定义它的:
Clients should not be forced to depend upon interfaces that they do not use.
直译成中文的话就是:客户端不应该被强迫依赖它不需要的接口。其中的“客户端”,可以理解为接口的调用者或者使用者。
实际上,“接口”这个名词可以用在很多场合中。生活中我们可以用它来指插座接口等。在软件开发中,我们既可以把它看作一组抽象的约定,也可以具体指系统与系统之间的 API 接口,还可以特指面向对象编程语言中的接口等。
前面我提到,理解接口隔离原则的关键,就是理解其中的接口
二字。在这条原则中,我们可以把“接口”理解为下面三种东西:
- 一组 API 接口集合;
- 单个 API 接口或函数;
- OOP 中的接口概念;
把接口理解为一组 API 接口集合
我们还是结合一个例子来讲解。微服务用户系统提供了一组跟用户相关的 API 给其他系统使用,比如:注册、登录、获取用户信息等。具体代码如下所示:
1 | public interface UserService |
现在,我们的后台管理系统要实现删除用户的功能,希望用户系统提供一个删除用户的接口。这个时候我们该如何来做呢?你可能会说,这不是很简单吗,我只需要在 UserService 中新添加一个 deleteUserByCellphone() 或 deleteUserById() 接口就可以了。这个方法可以解决问题,但是也隐藏了一些安全隐患。
删除用户是一个非常慎重的操作,我们只希望通过后台管理系统来执行,所以这个接口只限于给后台管理系统使用。如果我们把它放到 UserService 中,那所有使用到 UserService 的系统,都可以调用这个接口。不加限制地被其他业务系统调用,就有可能导致误删用户。
当然,最好的解决方案是从架构设计的层面,通过接口鉴权的方式来限制接口的调用。不过,如果暂时没有鉴权框架来支持,我们还可以从代码设计的层面,尽量避免接口被误用。我们参照接口隔离原则,调用者不应该强迫依赖它不需要的接口,将删除接口单独放到另外一个接口 RestrictedUserService 中,然后将 RestrictedUserService 只打包提供给后台管理系统来使用。具体的代码实现如下所示:
1 | public interface UserService |
在刚刚的这个例子中,我们把接口隔离原则中的接口,理解为一组接口集合,它可以是某个微服务的接口,也可以是某个类库的接口等等。在设计微服务或者类库接口的时候,如果部分接口只被部分调用者使用,那我们就需要将这部分接口隔离出来,单独给对应的调用者使用,而不是强迫其他调用者也依赖这部分不会被用到的接口。
把接口理解为单个 API 接口或函数
现在我们再换一种理解方式,把接口理解为单个接口或函数。那接口隔离原则就可以理解为:函数的设计要功能单一,不要将多个不同的功能逻辑在一个函数中实现。接下来,我们还是通过一个例子来解释一下:
1 | public class Statistics |
在上面的代码中,count() 函数的功能不够单一,包含很多不同的统计功能,比如,求最大值、最小值、平均值等等。按照接口隔离原则,我们应该把 count() 函数拆成几个更小粒度的函数,每个函数负责一个独立的统计功能。拆分之后的代码如下所示:
1 | public Long max(Collection<Long> dataSet) { //... } |
不过,你可能会说,在某种意义上讲,count() 函数也不能算是职责不够单一,毕竟它做的事情只跟统计相关。我们在讲单一职责原则的时候,也提到过类似的问题。实际上,判定功能是否单一,除了很强的主观性,还需要结合具体的场景。
不过,你应该已经发现,接口隔离原则跟单一职责原则有点类似,不过稍微还是有点区别。单一职责原则针对的是模块、类、接口的设计。而接口隔离原则相对于单一职责原则,一方面它更侧重于接口的设计,另一方面它的思考的角度不同。它提供了一种判断接口是否职责单一的标准:通过调用者如何使用接口来间接地判定。如果调用者只使用部分接口或接口的部分功能,那接口的设计就不够职责单一。
把接口理解为 OOP 中的接口概念
除了刚讲过的两种理解方式,我们还可以把接口理解为 OOP 中的接口概念,比如 Java 中的 Interface
。
假设我们的项目中用到了三个外部系统:Redis、MySQL、Kafka。每个系统都对应一系列配置信息,比如地址、端口、访问超时时间等。为了在内存中存储这些配置信息,供项目中的其他模块来使用,我们分别设计实现了三个 Configuration 类:RedisConfig、MysqlConfig、KafkaConfig。具体的代码实现如下所示:
1 | public class RedisConfig |
现在,我们有一个新的功能需求,希望支持 Redis 和 Kafka 配置信息的热更新 (hot update)
。但是,因为某些原因,我们并不希望对 MySQL 的配置信息进行热更新。
为了实现这样一个功能需求,我们设计实现了一个 ScheduledUpdater 类,以固定时间频率(periodInSeconds)来调用 RedisConfig、KafkaConfig 的 update() 方法更新配置信息。具体的代码实现如下所示:
1 | public interface Updater |
刚刚的热更新的需求我们已经搞定了。现在,我们又有了一个新的监控功能需求。通过命令行来查看 Zookeeper 中的配置信息是比较麻烦的。所以,我们希望能有一种更加方便的配置信息查看方式。不过,出于某些原因,我们只想暴露 MySQL 和 Redis 的配置信息,不想暴露 Kafka 的配置信息。为了实现这样一个功能,我们还需要对上面的代码做进一步改造。改造之后的代码如下所示:
1 | public interface Updater |
我们设计了两个功能非常单一的接口:Updater 和 Viewer。ScheduledUpdater 只依赖 Updater 这个跟热更新相关的接口,不需要被强迫去依赖不需要的 Viewer 接口,满足接口隔离原则。同理,SimpleHttpServer 只依赖跟查看信息相关的 Viewer 接口,不依赖不需要的 Updater 接口,也满足接口隔离原则。
你可能会说,如果我们不遵守接口隔离原则,不设计 Updater 和 Viewer 两个小接口,而是设计一个大而全的 Config 接口,让 RedisConfig、KafkaConfig、MysqlConfig 都实现这个 Config 接口,并且将原来传递给 ScheduledUpdater 的 Updater 和传递给 SimpleHttpServer 的 Viewer,都替换为 Config,那会有什么问题呢?我们先来看一下,按照这个思路来实现的代码是什么样的:
1 | public interface Config |
这样的设计思路也是能工作的,但是对比前后两个设计思路,在同样的代码量、实现复杂度、同等可读性的情况下,第一种设计思路显然要比第二种好很多:
第一种设计思路更加灵活、易扩展、易复用
因为 Updater、Viewer 职责更加单一,单一就意味了通用、复用性好。比如,我们现在又有一个新的需求,开发一个 Metrics 性能统计模块,并且希望将 Metrics 也通过 SimpleHttpServer 显示在网页上,以方便查看。这个时候,尽管 Metrics 跟 RedisConfig 等没有任何关系,但我们仍然可以让 Metrics 类实现非常通用的 Viewer 接口,复用 SimpleHttpServer 的代码实现。具体的代码如下所示:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28public class ApiMetrics implements Viewer
{
//...
}
public class DbMetrics implements Viewer
{
//...
}
public class Application
{
ConfigSource configSource = new ZookeeperConfigSource();
public static final RedisConfig redisConfig = new RedisConfig(configSource);
public static final KafkaConfig kafkaConfig = new KafkaConfig(configSource);
public static final MySqlConfig mySqlConfig = new MySqlConfig(configSource);
public static final ApiMetrics apiMetrics = new ApiMetrics();
public static final DbMetrics dbMetrics = new DbMetrics();
public static void main(String[] args)
{
SimpleHttpServer simpleHttpServer = new SimpleHttpServer(“127.0.0.1”, 2389);
simpleHttpServer.addViewer("/config", redisConfig);
simpleHttpServer.addViewer("/config", mySqlConfig);
simpleHttpServer.addViewer("/metrics", apiMetrics);
simpleHttpServer.addViewer("/metrics", dbMetrics);
simpleHttpServer.run();
}
}第二种设计思路在代码实现上做了一些无用功
因为 Config 接口中包含两类不相关的接口,一类是 update(),一类是 output() 和 outputInPlainText()。理论上,KafkaConfig 只需要实现 update() 接口,并不需要实现 output() 相关的接口。同理,MysqlConfig 只需要实现 output() 相关接口,并不需要实现 update() 接口。但第二种设计思路要求 RedisConfig、KafkaConfig、MySqlConfig 必须同时实现 Config 的所有接口函数。除此之外,如果我们要往 Config 中继续添加一个新的接口,那所有的实现类都要改动。相反,如果我们的接口粒度比较小,那涉及改动的类就比较少。