工厂模式在 Calendar 类中的应用
Calendar 类提供了大量跟日期相关的功能代码,同时,又提供了一个 getInstance() 工厂方法,用来根据不同的 TimeZone 和 Locale 创建不同的 Calendar 子类对象。也就是说,功能代码和工厂方法代码耦合在了一个类中。所以,即便我们去查看它的源码,如果不细心的话,也很难发现它用到了工厂模式。同时,因为它不单单是一个工厂类,所以,它并没有以 Factory 作为后缀来命名。从代码中,我们可以看出,getInstance() 方法可以根据不同 TimeZone 和 Locale,创建不同的 Calendar 子类对象,比如 BuddhistCalendar、JapaneseImperialCalendar、GregorianCalendar,这些细节完全封装在工厂方法中,使用者只需要传递当前的时区和地址,就能够获得一个 Calendar 类对象来使用,而获得的对象具体是哪个 Calendar 子类的对象,使用者在使用的时候并不关心:
1 | public abstract class Calendar implements Serializable, Cloneable, Comparable<Calendar> { |
建造者模式在 Calendar 类中的应用
我们知道,建造者模式有两种实现方法,一种是单独定义一个 Builder 类,另一种是将 Builder 实现为原始类的内部类。Calendar 就采用了第二种实现思路:
1 | public abstract class Calendar implements Serializable, Cloneable, Comparable<Calendar> { |
工厂模式是用来创建不同但是相关类型的对象(继承同一父类或者接口的一组子类),由给定的参数来决定创建哪种类型的对象。建造者模式用来创建一种类型的复杂对象,通过设置不同的可选参数,定制化地创建不同的对象。网上有一个经典的例子很好地解释了两者的区别:
顾客走进一家餐馆点餐,我们利用工厂模式,根据用户不同的选择,来制作不同的食物,比如披萨、汉堡、沙拉。对于披萨来说,用户又有各种配料可以定制,比如奶酪、西红柿、起司,我们通过建造者模式根据用户选择的不同配料来制作不同的披萨。
粗看 Calendar 的 Builder 类的 build() 方法,你可能会觉得它有点像工厂模式。你的感觉没错,前面一半代码确实跟 getInstance() 工厂方法类似,根据不同的 type 创建了不同的 Calendar 子类。实际上,后面一半代码才属于标准的建造者模式,根据 setXXX() 方法设置的参数,来定制化刚刚创建的 Calendar 子类对象。
装饰器模式在 Collections 类中的应用
Collections 类是一个集合容器的工具类,提供了很多静态方法,用来创建各种集合容器,比如通过 unmodifiableCollection() 静态方法,来创建 UnmodifiableCollection 类对象。而这些容器类中的 UnmodifiableCollection 类、CheckedCollection 和 SynchronizedCollection 类,就是针对 Collection 类的装饰器类。UnmodifiableCollection 类是 Collections 类的一个内部类,相关代码我摘抄到了下面:
1 | public class Collections { |
装饰器模式中的装饰器类是对原始类功能的增强。实际上,最关键的一点是,UnmodifiableCollection 的构造函数接收一个 Collection 类对象,然后对其所有的函数进行了包裹(Wrap):重新实现(比如 add() 函数)或者简单封装(比如 stream() 函数)。而简单的接口实现或者继承,并不会如此来实现 UnmodifiableCollection 类。
适配器模式在 Collections 类中的应用
老版本的 JDK 提供了 Enumeration 类来遍历容器。新版本的 JDK 用 Iterator 类替代 Enumeration 类来遍历容器。为了兼容老的客户端代码(使用老版本 JDK 的代码),我们保留了 Enumeration 类,并且在 Collections 类中,仍然保留了 enumeration() 静态方法。在新版本的 JDK 中,Enumeration 类是适配器类,它适配的是客户端代码和新版本 JDK 中新的迭代器 Iterator 类。不过,从代码实现的角度来说,这个适配器模式的代码实现,跟经典的适配器模式的代码实现,差别稍微有点大。enumeration() 静态函数的逻辑和 Enumeration 适配器类的代码耦合在一起,enumeration() 静态函数直接通过 new 的方式创建了匿名类对象:
1 | /** |
模板模式在 Collections 类中的应用
策略、模板、职责链三个模式常用在框架的设计中,提供框架的扩展点,让框架使用者,在不修改框架源码的情况下,基于扩展点定制化框架的功能。Java 中的 Collections 类的 sort() 函数就是利用了模板模式的这个扩展特性。我写了一个示例代码,实现了按照不同的排序方式(按照年龄从小到大、按照名字字母序从小到大、按照成绩从大到小)对 students 数组进行排序:
1 | public class Demo { |
Collections.sort() 实现了对集合的排序。为了扩展性,它将其中“比较大小”这部分逻辑,委派给用户来实现。如果我们把比较大小这部分逻辑看作整个排序逻辑的其中一个步骤,那我们就可以把它看作模板模式。不过,从代码实现的角度来看,它并不是模板模式的经典代码实现,而是基于 Callback 回调机制来实现的;如果我们并不把“比较大小”看作排序逻辑中的一个步骤,而是看作一种算法或者策略,那我们就可以把它看作一种策略模式的应用。不过,这也不是典型的策略模式,我们前面讲到,在典型的策略模式中,策略模式分为策略的定义、创建、使用这三部分。策略通过工厂模式来创建,并且在程序运行期间,根据配置、用户输入、计算结果等这些不确定因素,动态决定使用哪种策略。而在 Collections.sort() 函数中,策略的创建并非通过工厂模式,策略的使用也非动态确定。
观察者模式在 JDK 中的应用
JDK 提供了观察者模式的简单框架实现,只包含两个类:java.util.Observable 和 java.util.Observer。前者是被观察者,后者是观察者:
1 | public interface Observer { |
changed 成员变量
它用来表明被观察者(Observable)有没有状态更新。当有状态更新时,我们需要手动调用 setChanged() 函数,将 changed 变量设置为 true,这样才能在调用 notifyObservers() 函数的时候,真正触发观察者(Observer)执行 update() 函数。否则,即便你调用了 notifyObservers() 函数,观察者的 update() 函数也不会被执行。也就是说,当通知观察者被观察者状态更新的时候,我们需要依次调用 setChanged() 和 notifyObservers() 两个函数,单独调用 notifyObservers() 函数是不起作用的。
notifyObservers() 函数
notifyObservers() 函数之所以没有像其他函数那样,一把大锁加在整个函数上,主要还是出于性能的考虑。notifyObservers() 函数依次执行每个观察者的 update() 函数,每个 update() 函数执行的逻辑提前未知,有可能会很耗时。如果在 notifyObservers() 函数上加 synchronized 锁,notifyObservers() 函数持有锁的时间就有可能会很长,这就会导致其他线程迟迟获取不到锁,影响整个 Observable 类的并发性能。
Vector 类不是线程安全的,在多线程环境下,同时添加、删除、遍历 Vector 类对象中的元素,会出现不可预期的结果。所以,在 JDK 的代码实现中,为了避免直接给 notifyObservers() 函数加锁而出现性能问题,JDK 采用了一种折中的方案。在 notifyObservers() 函数中,我们先拷贝一份观察者列表,赋值给函数的局部变量,我们知道,局部变量是线程私有的,并不在线程间共享。这个拷贝出来的线程私有的观察者列表就相当于一个快照,我们遍历快照,逐一执行每个观察者的 update() 函数。而这个遍历执行的过程是在快照这个局部变量上操作的,不存在线程安全问题,不需要加锁。所以,我们只需要对拷贝创建快照的过程加锁,加锁的范围减少了很多,并发性能提高了。
为什么说这是一种折中的方案呢?这是因为,这种加锁方法实际上是存在一些问题的。在创建好快照之后,添加、删除观察者都不会更新快照,新加入的观察者就不会被通知到,新删除的观察者仍然会被通知到。这种权衡是否能接受完全看你的业务场景,实际上,这种处理方式也是多线程编程中减小锁粒度、提高并发性能的常用方法。
单例模式在 Runtime 类中的应用
每个 Java 应用在运行时会启动一个 JVM 进程,每个 JVM 进程都只对应一个 Runtime 实例,用于查看 JVM 状态以及控制 JVM 行为。进程内唯一,所以比较适合设计为单例,在编程的时候,我们不能自己去实例化一个 Runtime 对象,只能通过 getRuntime() 静态方法来获得。Runtime 类的的代码实现如下所示:
1 | /** |