我们知道,CPU 资源是有限的,任务的处理速度与线程个数并不是线性正相关。相反,过多的线程反而会导致 CPU 频繁切换,处理性能下降。所以,线程池的大小一般都是综合考虑要处理任务的特点和硬件环境,来事先设置的。
如何理解“队列”?
队列
(Queue)这个概念非常好理解。你可以把它想象成排队买票,先来的先买,后来的人只能站末尾,不允许插队。先进者先出,这就是典型的队列。
我们知道,栈只支持两个基本操作:入栈 push()和出栈 pop()。队列跟栈非常相似,支持的操作也很有限,最基本的操作也是两个:入队 enqueue(),放一个数据到队列尾部;出队 dequeue(),从队列头部取一个元素。所以,队列跟栈一样,也是一种操作受限的线性表数据结构:
队列的概念很好理解,基本操作也很容易掌握。作为一种非常基础的数据结构,队列的应用也非常广泛,特别是一些具有某些额外特性的队列,比如循环队列、阻塞队列、并发队列。它们在很多偏底层系统、框架、中间件的开发中,起着关键性的作用。比如高性能队列 Disruptor、Linux 环形缓存,都用到了循环并发队列;java.util.concurrent 并发包利用 ArrayBlockingQueue 来实现公平锁等。
顺序队列和链式队列
跟栈一样,队列可以用数组来实现,也可以用链表来实现。用数组实现的队列叫作顺序队列
,用链表实现的队列叫作链式队列
。我们先来看下基于数组的实现方法:
1 | // 用数组实现的队列 |
对于栈来说,我们只需要一个栈顶指针就可以了。但是队列需要两个指针:一个是 head 指针,指向队头;一个是 tail 指针,指向队尾。你可以结合下面这张图来理解。当 a, b, c, d 依次入队之后,队列中的 head 指针指向下标为 0 的位置,tail 指针指向下标为 4 的位置:
当我们调用两次出队操作之后,队列中 head 指针指向下标为 2 的位置,tail 指针仍然指向下标为 4 的位置:
你肯定已经发现了,随着不停地进行入队、出队操作,head 和 tail 都会持续往后移动。当 tail 移动到最右边,即使数组中还有空闲空间,也无法继续往队列中添加数据了。实际上,我们在出队时可以不用搬移数据。如果没有空闲空间了,我们只需要在入队时,再集中触发一次数据的搬移操作。借助这个思想,出队函数 dequeue() 保持不变,我们稍加改造一下入队函数 enqueue() 的实现:
1 | // 入队操作,将 item 放入队尾 |
从代码中我们看到,当队列的 tail 指针移动到数组的最右边后,如果有新的数据入队,我们可以将 head 到 tail 之间的数据,整体搬移到数组中 0 到 tail-head 的位置:
基于链表的实现,我们同样需要两个指针:head 指针和 tail 指针。它们分别指向链表的第一个结点和最后一个结点。如图所示,入队时,tail->next= new_node, tail = tail->next;出队时,head = head->next:
循环队列
循环队列
,顾名思义,它长得像一个环。原本数组是有头有尾的,是一条直线。现在我们把首尾相连,扳成了一个环。我画了一张图,你可以直观地感受一下:
我们可以发现,图中这个队列的大小为 8,当前 head=4, tail=7。当有一个新的元素 a 入队时,我们放入下标为 7 的位置。但这个时候,我们并不把 tail 更新为 8,而是将其在环中后移一位,到下标为 0 的位置。当再有一个元素 b 入队时,我们将 b 放入下标为 0 的位置,然后 tail 加 1 更新为 1。所以,在 a, b 依次入队之后,循环队列中的元素就变成了下面的样子:
通过这样的方法,我们成功避免了数据搬移操作。看起来不难理解,但是循环队列的代码实现难度要比前面讲的非循环队列难多了。要想写出没有 bug 的循环队列的实现代码,我个人觉得,最关键的是,确定好队空和队满的判定条件。在用数组实现的非循环队列中,队满的判断条件是 tail == n,队空的判断条件是 head == tail。针对循环队列,队列为空的判断条件仍然是 head == tail。但队列满的判断条件就稍微有点复杂了:
就像我图中画的队满的情况,tail=3, head=4, n=8,所以总结一下规律就是:(3+1)%8=4。多画几张队满的图,你就会发现,当队满时,(tail+1)%n=head。你有没有发现,当队列满时,图中的 tail 指向的位置实际上是没有存储数据的。所以,循环队列会浪费一个数组的存储空间:
1 | public class CircularQueue { |
阻塞队列和并发队列
队列这种数据结构很基础,平时的业务开发不大可能从零实现一个队列,甚至都不会直接用到。而一些具有特殊特性的队列应用却比较广泛,比如阻塞队列和并发队列。
阻塞队列
阻塞队列
其实就是在队列基础上增加了阻塞操作。简单来说,就是在队列为空的时候,从队头取数据会被阻塞。因为此时还没有数据可取,直到队列中有了数据才能返回;如果队列已经满了,那么插入数据的操作就会被阻塞,直到队列中有空闲位置后再插入数据,然后再返回:
这种基于阻塞队列实现的“生产者-消费者模型”,可以有效地协调生产和消费的速度。当“生产者”生产数据的速度过快,“消费者”来不及消费时,存储数据的队列很快就会满了。这个时候,生产者就阻塞等待,直到“消费者”消费了数据,“生产者”才会被唤醒继续“生产”。而且不仅如此,基于阻塞队列,我们还可以通过协调“生产者”和“消费者”的个数,来提高数据的处理效率。比如前面的例子,我们可以多配置几个“消费者”,来应对一个“生产者”:
并发队列
前面我们讲了阻塞队列,在多线程情况下,会有多个线程同时操作队列,这个时候就会存在线程安全问题。线程安全的队列我们叫作并发队列
。最简单直接的实现方式是直接在 enqueue()、dequeue() 方法上加锁,但是锁粒度大并发度会比较低,同一时刻仅允许一个存或者取操作。实际上,基于数组的循环队列,利用 CAS 原子操作,可以实现非常高效的并发队列。这也是循环队列比链式队列应用更加广泛的原因。
队列在有限资源池中的应用
我们一般有两种处理策略。第一种是非阻塞的处理方式,直接拒绝任务请求;另一种是阻塞的处理方式,将请求排队,等到有空闲线程时,取出排队的请求继续处理。
基于链表的实现方式,可以实现一个支持无限排队的无界队列
(Unbounded Queue),但是可能会导致过多的请求排队等待,请求处理的响应时间过长。所以,针对响应时间比较敏感的系统,基于链表实现的无限排队的线程池是不合适的;而基于数组实现的有界队列
(Bounded Queue),队列的大小有限,所以线程池中排队的请求超过队列大小时,接下来的请求就会被拒绝,这种方式对响应时间敏感的系统来说,就相对更加合理。不过,设置一个合理的队列大小,也是非常有讲究的。队列太大导致等待的请求太多,队列太小会导致无法充分利用系统资源、发挥最大性能。
除了前面讲到队列应用在线程池请求排队的场景之外,队列可以应用在任何有限资源池中,用于排队请求,比如数据库连接池等。实际上,对于大部分资源有限的场景,当没有空闲资源时,基本上都可以通过队列这种数据结构来实现请求排队。