如何理解“回溯算法”?
笼统地讲,回溯算法
(Backtracking Algorithm)很多时候都应用在“搜索”这类问题上。不过这里说的搜索,并不是狭义的指我们前面讲过的图的搜索算法,而是在一组可能的解中,搜索满足期望的解。回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。
我们有一个 8x8 的棋盘,希望往里放 8 个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。你可以看我画的图,第一幅图是满足条件的一种方法,第二幅图是不满足条件的。八皇后问题就是期望找到所有满足这种要求的放棋子方式:
我们把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行, 第二行, 第三行, …, 第八行。在放置的过程中,我们不停地检查当前放法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种放法,继续尝试。回溯算法非常适合用递归代码实现:
1 | int[] result = new int[8]; // 全局或成员变量,下标表示行,值表示 queen 存储在哪一列 |
两个回溯算法的经典应用
回溯算法的理论知识很容易弄懂。不过,对于新手来说,比较难的是用递归来实现。
0-1 背包
0-1 背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单但没有那么高效的解法,那就是回溯算法。0-1 背包问题有很多变体,我这里介绍一种比较基础的。我们有一个背包,背包总的承载重量是 Wkg。现在我们有 n 个物品,每个物品的重量不等,并且不可分割。我们现在期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大。由于物品是不可分割的,要么装要么不装,所以叫 0-1 背包问题。
对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于 n 个物品来说,总的装法就有 2^n 种,去掉总重量超过 Wkg 的,从剩下的装法中选择总重量最接近 Wkg 的。这里就可以用回溯的方法。我们可以把物品依次排列,整个问题就分解为了 n 个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。这里还稍微用到了一点搜索剪枝的技巧,就是当发现已经选择的物品的重量超过 Wkg 之后,我们就停止继续探测剩下的物品:
1 | public int maxW = Integer.MIN_VALUE; // 存储背包中物品总重量的最大值 |
正则表达式
正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达非常丰富的语义。为了方便讲解,我假设正则表达式中只包含“*”和“?”这两种通配符,并且对这两个通配符的语义稍微做些改变,其中,“*”匹配任意多个任意字符,“?”匹配零个或者一个任意字符。
我们依次考察正则表达式中的每个字符,当是非通配符时,我们就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。如果遇到特殊字符的时候,我们就有多种处理方式了,也就是所谓的岔路口,比如“*”有多种匹配方案,可以匹配任意个文本串中的字符,我们就先随意的选择一种匹配方案,然后继续考察剩下的字符。如果中途发现无法继续匹配下去了,我们就回到这个岔路口,重新选择一种匹配方案,然后再继续匹配剩下的字符:
1 | public class Pattern |