Ethan's Blog


  • Home

  • Archives

  • Tags

  • Search

递归树

Posted on 2021-01-05

递归树与时间复杂度分析

递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作递归树(Recursion Tree)。归并排序每次会将数据规模一分为二,我们把归并排序画成递归树,就是下面这个样子:

因为每次分解都是一分为二,所以代价很低,我们把时间上的消耗记作常量 1。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作 n。现在,我们只需要知道这棵树的高度 h,用高度 h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n*h)。

从归并排序的原理和递归树,可以看出来,归并排序递归树是一棵满二叉树。满二叉树的高度大约是 log2​n,所以,归并排序递归实现的时间复杂度就是 O(nlogn)。我这里的时间复杂度都是估算的,对树的高度的计算也没有那么精确,但是这并不影响复杂度的计算结果。

Read more »

红黑树

Posted on 2021-01-04

什么是“平衡二叉查找树”?

平衡二叉树的严格定义是这样的:二叉树中任意一个节点的左右子树的高度相差不能大于 1。从这个定义来看,上一节我们讲的完全二叉树、满二叉树其实都是平衡二叉树,但是非完全二叉树也有可能是平衡二叉树:

平衡二叉查找树不仅满足上面平衡二叉树的定义,还满足二叉查找树的特点。最先被发明的平衡二叉查找树是 AVL 树,它严格符合我刚讲到的平衡二叉查找树的定义,即任何节点的左右子树高度相差不超过 1,是一种高度平衡的二叉查找树。发明平衡二叉查找树这类数据结构的初衷是,解决普通二叉查找树在频繁的插入、删除等动态更新的情况下,出现时间复杂度退化的问题。

平衡二叉查找树中“平衡”的意思,其实就是让整棵树左右看起来比较“对称”、比较“平衡”,不要出现左子树很高、右子树很矮的情况。这样就能让整棵树的高度相对来说低一些,相应的插入、删除、查找等操作的效率高一些。所以,如果我们现在设计一个新的平衡二叉查找树,只要树的高度不比 log2n 大很多(比如树的高度仍然是对数量级的),尽管它不符合我们前面讲的严格的平衡二叉查找树的定义,但我们仍然可以说,这是一个合格的平衡二叉查找树。

Read more »

二叉树基础

Posted on 2021-01-03

树(Tree)

我们首先来看,什么是树?我在图中画了几棵树:

树这种数据结构真的很像我们现实生活中的树,这里面每个元素我们叫做“节点”;用来连接相邻节点之间的关系,我们叫做“父子关系”。比如下面这幅图,A 节点就是 B 节点的父节点,B 节点是 A 节点的子节点。B、C、D 这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫做根节点,也就是图中的节点 E。我们把没有子节点的节点叫做叶子节点,比如图中的 G、H、I、J、K、L 都是叶子节点:

Read more »

哈希算法

Posted on 2021-01-03

什么是哈希算法?

将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。但是,要想设计一个优秀的哈希算法并不容易,根据我的经验,我总结了需要满足的几点要求:

  • 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法);
  • 对输入数据非常敏感,哪怕原始数据只修改了一个 bit,最后得到的哈希值也大不相同;
  • 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小;
  • 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值;

我们分别对“今天我来讲哈希算法”和“jiajia”这两个文本,计算 MD5 哈希值,得到两串看起来毫无规律的字符串(MD5 的哈希值是 128 位的 bit 长度,为了方便表示,我把它们转化成了 16 进制编码)。可以看出来,无论要哈希的文本有多长、多短,通过 MD5 哈希之后,得到的哈希值的长度都是相同的,而且得到的哈希值看起来像一堆随机数,完全没有规律:

1
2
MD5("今天我来讲哈希算法") = bb4767201ad42c74e650c1b6c03d78fa
MD5("jiajia") = cd611a31ea969b908932d44d126d195b

我们再来看两个非常相似的文本,“我今天讲哈希算法!”和“我今天讲哈希算法”。这两个文本只有一个感叹号的区别。如果用 MD5 哈希算法分别计算它们的哈希值,你会发现,尽管只有一字之差,得到的哈希值也是完全不同的:

1
2
MD5("我今天讲哈希算法!") = 425f0d5a917188d2c3c3dc85b5e4f2cb
MD5("我今天讲哈希算法") = a1fb91ac128e6aa37fe42c663971ac3d

通过哈希算法得到的哈希值,很难反向推导出原始数据。比如上面的例子中,我们就很难通过哈希值“a1fb91ac128e6aa37fe42c663971ac3d”反推出对应的文本“我今天讲哈希算法”。哈希算法要处理的文本可能是各种各样的。比如,对于非常长的文本,如果哈希算法的计算时间很长,那就只能停留在理论研究的层面,很难应用到实际的软件开发中。比如,我们把今天这篇包含 4000 多个汉字的文章,用 MD5 计算哈希值,用不了 1ms 的时间。

哈希算法的应用非常非常多,我选了最常见的七个,分别是:安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。

Read more »

散列表

Posted on 2021-01-02

散列思想

散列表的英文叫“Hash Table”,我们平时也叫它“哈希表”或者“Hash 表”。散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。

假设校长说,参赛编号不能设置得这么简单,要加上年级、班级这些更详细的信息,所以我们把编号的规则稍微修改了一下,用 6 位数字来表示。比如 051167,其中,前两位 05 表示年级,中间两位 11 表示班级,最后两位还是原来的编号 1 到 89。尽管我们不能直接把编号作为数组下标,但我们可以截取参赛编号的后两位作为数组下标,来存取选手信息数据。当通过参赛编号查询选手信息的时候,我们用同样的方法,取参赛编号的后两位,作为数组下标,来读取数组中的数据。

这就是典型的散列思想。其中,参赛选手的编号我们叫做键值。我们用它来标识一个选手。我们把参赛编号转化为数组下标的映射方法就叫作散列函数,而散列函数计算得到的值就叫作散列值:

通过这个例子,我们可以总结出这样的规律:散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。

Read more »
1…293031…55
necusjz

necusjz

274 posts
16 tags
© 2016 - 2025 necusjz
Powered by Hexo
Theme - NexT.Mist